A generalization of the reciprocity law of multiple Dedekind sums
نویسندگان
چکیده
— Various multiple Dedekind sums were introduced by B.C.Berndt, L.Carlitz, S.Egami, D.Zagier and A.Bayad. In this paper, noticing the Jacobi form in Bayad [4], the cotangent function in Zagier [23], Egami’s result on cotangent functions [14] and their reciprocity laws, we study a special case of the Jacobi forms in Bayad [4] and deduce a generalization of Egami’s result on cotangent functions and a generalization of Zagier’s result. Further, we consider their reciprocity laws. Résumé. — Plusieurs sommes multiples de Dedekind ont été introduites par B.C.Berndt, L.Carlitz, S.Egami, D.Zagier et A.Bayad. Dans cet article, après avoir remarqué la forme de Jacobi dans Bayad [4], la fonction cotangente dans Zagier [23], le résultat d’Egami sur les fonctions cotangentes [14] et leurs lois de reciprocité, nous étudions un cas spécial de la forme de Jacobi de Bayad [4] et déduisons une généralisation du résultat d’Egami sur les fonctions cotangentes et une généralisation du résultat de Zagier. De plus, nous considérons leurs lois de réciprocité.
منابع مشابه
Twisted Dedekind Type Sums Associated with Barnes’ Type Multiple Frobenius-Euler l-Functions
The aim of this paper is to construct new Dedekind type sums. We construct generating functions of Barnes’ type multiple FrobeniusEuler numbers and polynomials. By applying Mellin transformation to these functions, we define Barnes’ type multiple l-functions, which interpolate Frobenius-Euler numbers at negative integers. By using generalizations of the Frobenius-Euler functions, we define gene...
متن کاملThe Pick Theorem and the Proof of the Reciprocity Law for Dedekind Sums
This paper is to provide some new generalizations of the Pick Theorem. We first derive a point-set version of the Pick Theorem for an arbitrary bounded lattice polyhedron. Then, we use the idea of a weight function of [2] to obtain a weighted version. Other Pick type theorems known to the author for the integral lattice Z2 are reduced to some special cases of this generalization. Finally, using...
متن کاملThe Elliptic Apostol-dedekind Sums Generate Odd Dedekind Symbols with Laurent Polynomial Reciprocity Laws
Abstract. Dedekind symbols are generalizations of the classical Dedekind sums (symbols). There is a natural isomorphism between the space of Dedekind symbols with Laurent polynomial reciprocity laws and the space of modular forms. We will define a new elliptic analogue of the Apostol-Dedekind sums. Then we will show that the newly defined sums generate all odd Dedekind symbols with Laurent poly...
متن کاملThe Reciprocity Law for Dedekind Sums via the constant Ehrhart coefficient
These sums appear in various branches of mathematics: Number Theory, Algebraic Geometry, and Topology; they have consequently been studied extensively in various contexts. These include the quadratic reciprocity law ([13]), random number generators ([12]), group actions on complex manifolds ([9]), and lattice point problems ([14], [5]). Dedekind was the first to show the following reciprocity l...
متن کاملM ay 2 00 3 The Reciprocity Law for Dedekind Sums via the constant Ehrhart coefficient
These sums appear in various branches of mathematics: Number Theory, Algebraic Geometry, and Topology; they have consequently been studied extensively in various contexts. These include the quadratic reciprocity law ([13]), random number generators ([12]), group actions on complex manifolds ([9]), and lattice point problems ([14], [5]). Dedekind was the first to show the following reciprocity l...
متن کامل